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MODULAR LATTICES
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Abstract. It is shown that there is N such that there is no al-
gorithm to decide for identities in at most N variables validity in
the class of finite modular lattices. This is based on Slobodskoi’s
result that the Restricted Word Problem is unsolvable for the class
of finite groups and relies on Freese’s technique of capturing group
presentations within free modular lattices.

1. Introduction

Since Dedekind’s early result on modular lattices with 3 generators,
calculations in modular lattices have served to reveal structure, par-
ticularly in algebraic and geometric contexts. Though, as shown by
Hutchinson [15] and Lipshitz [21], the Restricted Word Problem for
modular lattices is unsolvable (5 generators suffice) and so is the Triv-
iality Problem. These results remain valid for any class of modular
lattices containing the subspace lattices of some infinite dimensional
vector space. Applying von Neumann’s rings associated with frames,
i.e. coordinate systems, in modular lattices, the proof relies on inter-
preting a finitely presented group with unsolvable word problem cf.
Section 9, below.

On the other hand, for many rings R, including all division rings and
homomorphic images of Z, the equational theory of the class of all lat-
tices L(RM) of submodules of R-modules is decidable [11]; a thorough
analysis has been given by Gábor Czédli and George Hutchinson [16].

Again based on frames and the fact, shown by András Huhn [14],
that frames freely generate projective modular lattices, Ralph Freese
[8] proved unsolvability of the Word Problem for the modular lattice
FM(5) with 5 free generators. On the model side, he used a construc-
tion, due to Dilworth and Hall, obtaining a modular lattice matching an
upper section of one with a lower section of the other - here applied to
height 2 intervals in subspace lattices of 4-dimensional vector spaces.
The matching was such that results of Cohn and McIntyre could be
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used to capture group presentations within one of the associated skew
fields. On the syntactic side, this structure is reflected in a sublattice
of FM(5), by a method to be called Freese’s technique (definitions are
given below):

• Start with terms providing, in a free modular lattice, a config-
uration composed of frames.
• Use “reduction” of frames (mimicking subquotients of modules)

to force additional relations, e.g. characteristic p of frames for
some prime p.
• Based on integers in coordinate rings, construct elements be-

having well under reduction (called “stable” in [12]), a property
which is inherited under reduction and change of the reference
frame via glueing.
• Use stable elements obtained via glueing as group generators

and force group relations on these via reduction.

Actually, Freese’s proof associates a projective modular lattice with any
finitely presented group and his result remains valid for all varieties of
modular lattices containing all infinite modular lattices of height 6.

The case of the free modular lattice with 4 generators has been done
in [12] interpreting finitely presented 2-generator groups G via a con-
cept of “skew-frames of characteristic p × p”, providing 2 stable ele-
ments. Here, models are obtained by a glueing construction involving
a lattice ordered system of components given as lattices of submodules
of free (Z/pZ)G-modules.

The result crucial for the present note is the following.

Theorem 1.1. Slobodskoi [22]. The Restricted Word Problem for
the class of finite groups is unsolvable. That is, there is a list ḡ =
(g1, . . . , gn) of generator symbols and a finite set of relations ρi(ḡ) in
the language of groups such that there is no algorithm to decide, for
any word w(ḡ), whether w(ā) = e for all finite groups G and all ā in
G satisfying the relations ρi(ā) for all i.

Kharlampovich [17] proved the analogue for finite nilpotent groups,
even more restricted classes of finite groups have been dealt with in [19].
A concise review of Slobodkoi’s result has been given in [2, Section 2].
For a detailed analysis see [18, Section 7.4].

A rather immediate consequence of Thm. 1.1 is that the Restricted
Word Problem is unsolvable for any class of finite modular lattices
containing all subspace lattices of finite vector spaces cf. Section 9. The
same applies to the Triviality Problem [13], based on the unsolvability
for the class of finite groups, proved by Bridson and Wilton [2].
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Theorem 1.2. With n from Slobodkoi’s result, the set of identities in
n+ 6 variables, valid in all finite modular lattices, is non-recursive.

Thm 1.2 adapts to all classes of finite modular lattices containing
the particular ones constructed in Thm. 7.4 from groups in a class
with unsolvable restricted word problem.

In a recent related result, Kühne and Yashfe [20] show that there
is no algorithm to decide, for any finite geometric lattice L with di-
mension function δ, whether there is a join embedding ε of L into the
subspace lattice of some vector space (over fields from any specified
class) such that, for some c ∈ N, dim ε(x) = c · δ(x) for all x ∈ L.

Concerning the proof of Thm. 1.2, on the model side, the construc-
tion given in [12, Section 4] is extended combining n skew frames (into
a “tower”) to deal with n group generators (Section 7). On the formal
side, for convenience, we first capture towers by presentations projec-
tive within modular lattices (Section 3). Reductions of towers and
stable elements are discussed in Section 4, coordinates and Freese’s
method of forcing group relations in Section 5. Finally, in Section 8 re-
duction according to [12, Lemma 9] is used to turn each skew frame of
a tower, one at a time, into one of characteristic p×p and to obtain the
stable element provided by [12, Cor. 13]. Stable elements associated
with other skew frames will be transformed (thanks to Ralph Freese)
into stable elements, again, and it does not matter that characteristic
p× p is (supposedly) lost. For easy reference, a description of the (well
known) general method is given in Section 2.

2. Presentations and reduction to identities

2.1. Presentations. Given a similarity type of algebraic structures,
we fix a variety T with solvable word problem for free algebras FT (x̄)
in free generators x̄ = (x1, . . . , xn), called variables. Elements t(x̄) will
be called terms. For binary operator symbols, say +, we write s+ t̄ to
denote the list (s+ t1, . . . , s+ tn).

Due to the solvability of the word problem there is an algorithm to
decide, for any terms t(x̄), s(x̄) in the absolutely free algebra, whether
the identity t(x̄) = s(x̄) is valid in T , i.e. whether the terms denote
the same element of FT (x̄). This applies also to expansions by new
constants.

To simplify notation, a list (t1(x̄), . . . , tn(x̄)) is also written as t̄(x̄)
and t̄(x̄)|m stands for (t1(x̄), . . . tm(x̄)) where m ≤ n. Also, we write
t̄(ū(ȳ)) = t̄(u1(ȳ), , . . . , un(ȳ)) and the like.
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Given a list c̄ of (pairwise distinct) new constants, called generator
symbols, a relation ρ(c̄) is an expression t(c̄) = s(c̄) where t(x̄) and
s(x̄) are terms. A (finite) presentation Π (also written as (Π, c̄)) is then
given by c̄ and a finite set of relations ρ(c̄). Constant (i.e. variable free)
terms in the language expanded by c̄ are also referred to as “terms over
Π”.

A relation ρ(c̄), as above, is satisfied by ā = (a1, . . . , an) in A ∈ T
if t(ā) = s(ā), we write A |= ρ(ā). (A, ā) is a model of Π, written as
A |= Π, if all relations of Π are satisfied in A. Par abuse de language
we also say that ā is a Π in A and we use c̄ to denote ā.

In the sequel, let A ⊆ T denote a class of algebraic structures closed
under subalgebras. We say that (A, ā) is in A if A ∈ A. A relation
ρ(c̄) is a consequence of Π in A, also implied by Π in A, if A |= ρ(ā)
for all models (A, ā) of Π in A. The Restricted Word Problem for A is
unsolvable if there is a presentation (Π, c̄) such there is no algorithm
to decide, for any relation ρ(c̄), whether ρ(c̄) is a consequence of (Π, c̄)
within A.

2.2. Transformations and strengthening. A transformation within
A of Π to a presentation Ψ in generator symbols d̄ = (d1, . . . , dm)
is given by a list of terms uj(x̄), j = 1, . . . ,m, such that one has
(A, (u1(ā), . . . , um(ā)) a model of Ψ for each model (A, ā) of Π in A.
The composition with a further transformation Ψ to Φ, given by the
vk(ȳ), is the transformation obtained by the terms vk(u1(x̄), . . . , um(x̄)).
Thus, one obtains transformations by iterated composition. The pre-
sentations Π and Ψ are equivalent within A if, in the above, one has
Φ = Π and A |= v̄(ū(ā)) = ā, and B |= ū(v̄(b̄)) = b̄ for all models (A, ā)
of Π and (B, b̄) of Ψ. In particular, if Ψ is obtained from Φ adding gen-
erators (that is, m > n and ci = di for i ≤ n) and relations then Π and
Ψ are equivalent within A if and only if there is a transformation of Φ
to Ψ within A such that uj = xj for j ≤ n.

Consider presentations Π and Π+ in the same generator symbols c̄ =
(c1, . . . , cn). A transformation from Π to Π+ within A given by terms
ui(x̄), i = 1, . . . , n (also written as uci(x̄) with xi = xci) strengthens Π
to Π+ within A if the following hold.

(1) The relations of Π are consequences of Π+ within A.
(2) ui(ā) = ai for i = 1, . . . , n and all models (A, ā) of Π+ in A.

That is, from any model (A, ā) of Π in A one obtains the model
(A, ū(ā)) of Π+ while models of Π+ remain unchanged.

Considering a model (A, ā) of Π, it is common use to write also ci
in place of ai, that is, the generator symbol ci denotes the element ai
of A. In view of this, we use the notation ci := ui(c̄) to indicate the
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terms ui(x̄) defining the strengthening of Π to Π+ - without mentioning
ci := ci if ui(x̄) = xi. In particular this is done if we construct a
sequence of strengthenings - which, of course, provides a strengthening
of the original presentation.

2.3. Projective presentations. A presentation Π is projective within
A if there are (witnessing) terms tΠ1 (x̄), . . . , tΠn (x̄) such that the follow-
ing hold for all A ∈ A and ā in A.

(1) (A, (tΠ1 (ā), . . . , tΠn (ā)) |= Π.
(2) If (A, ā) |= Π then tΠi (ā) = ai for all i.

Then, of course, Π is projective within any B ⊆ A.

Fact 2.1. If Π1 and Π2 are projective within A then so is their disjoint
union, e.g. if Π2 introduces additional generators, but no relations.

Fact 2.2. If Π is strengthened to Π+ within A then Π+ is projective
in A if so is Π.

Fact 2.3. If Π is projective in A, with witnessing terms tΠi (x̄), then
the identity

t(tΠ1 (x̄), . . . , tΠn (x̄)) = s(tΠ1 (x̄), . . . , tΠn (x̄))

is valid in A if and only if t(ā) = s(ā) for all models (A, ā) of Π in A.

Now, assume that A is a variety, i.e. an equationally definable class.
Then for each presentation (Π, c̄) one has “the” algebra FA(Π, c̄) in
A freely generated by c̄ under the relations Π; here, c̄ also denotes its
image under the canonical homomorphism. This algebra is projective
within A if and only if so is the presentation (Π, c̄).

Strengthening the presentation (Π, c̄) to Π+ with additional relation
s(c̄) = t(c̄) then means to provide b̄ in FA(Π, c̄) such that s(b̄) = t(b̄)
and φ(b̄) = φ(c̄) for all A ∈ A and homomorphisms φ : FA(Π, c̄)→ A
such that s(φ(c̄)) = t(φ(c̄)).

2.4. Reducing quasi-identities to identities. Given a signature,
an identity or equation is a sentence of the form ∀x̄. t(x̄) = s(x̄), a
quasi-identity a sentence of the form ∀ȳ. α(ȳ) ⇒ t(ȳ) = s(ȳ) with
antecedent α(ȳ) ≡

∧
i ti(ȳ) = si(ȳ); here t(x̄), s(x̄), ti(ȳ), and si(ȳ) are

terms. Observe that, replacing variables by new constants, α is turned
into a presentation.

Consider classes M0 and G0 of algebraic structures in not necessar-
ily distinct signatures, both closed under subalgebras. The task is to
reduce quasi-identities for G0 to equations for M0; that is, given a set
Λ of quasi-identities in the language of G0 to construct an algorithm
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associating with each β ∈ Λ an equation β∗ in the language ofM0 such
that β holds in G0 if and only if β∗ holds in M0.

In the sequel we describe the general structure of such algorithm
to be applied to the case where G0 is the class of all finite groups,
M0 the class of all finite modular lattices. Fix a set Λ0 of formulas
α(ȳ) ≡

∧h
i=1 wi(ȳ) = vi(ȳ), ȳ = (y1, . . . , ynα), in the language of G0.

Hypothesis: There is an algorithm which constructs the following
in the language of M0.

(a) For any given α ∈ Λ0 a presentation (Π, c̄) with c̄ = (c1, . . . , cN)
and terms ū = (u1, . . . , uN) with N := Nα ≥ n := nα

(b) For each r-ary operation symbol f of G0, a term f#(z̄, x̄), z̄ =
(z1, . . . , zr) where x̄ = (x1, . . . , xN).

Now, for a formula γ(ȳ) in the language of G0, the translation according
to (b) into a formula in the language ofM0 is denoted by γ#(ȳ, x̄) and
the following are required.

(i) (Π, c̄) is projective for M0 with witnessing terms t̄.
(ii) If (L, ā) is a model of (Π, c̄) in M0 then so is (L, ū(ā)).
(iii) For any α ∈ Λ0, (Π, c̄) implies α#(ū(c̄)|n), ū(c̄)) in M0.
(iv) For any model (L, ā) of (Π, c̄) with L ∈ M0, the algebra G =

G(L, ū|n(ā)) generated by ū|n(ā) under the operations b̄ 7→
f#(b̄, ū|n(ā)), f an operation symbol of G0, is a member of G0

and (G, ū|n(ā)) |= α(ū|n(ā)).
(v) For any α ∈ Λ0 and G ∈ G0, with generators ḡ = (g1, . . . , gn)

such that G |= α(ḡ), there is a model (L(G, ḡ), ā) of (Π, c̄) with
L(G, ḡ) ∈ M0 and ū(ā) = ā and, moreover, such that there
is an embedding ω : G → G(L(G, ḡ), ā) with ω(gi) = ai for
i = 1, . . . , N .

Lemma 2.4. Given an algorithm satisfying the above hypothesis, there
is an algorithm associating with any quasi-identity β, with antecedent
α ∈ Λ0 in the language of G0, an equation β∗ in the language of M0

such that β holds in G0 if and only if β∗ holds in M0.
In particular, if a presentation Ψ in n generators in the language of

G0 is given, then the restricted word problem for Ψ within G0 reduces
to the decision problem for N-variable identities within M0 where N
is the number of generators in the presentation (Π, c̄), required in (a)
above.

Proof. By (b), there is an algorithm associating, uniformly for all n,N
(n ≤ N), with any term w(ȳ) in the language of G0 a term w#(ȳ, x̄) in

the language of M0 such that y#
i (ȳ, x̄) = yi and

(f(w1(ȳ), . . . , wn(ȳ)))#(ȳ, x̄) = f#(w#
1 (ȳ, x̄), . . . , w#

n (ȳ, x̄)).
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Now, given β ≡ ∀y.(α(ȳ)⇒ w(ȳ) = v(ȳ)) where α ∈ Λ0, let β∗ denote
the identity ∀x̄. γ(x̄) where γ(x̄) denotes

w#(u1(t̄(x̄)), . . . , un(t̄(x̄)), ū(t̄(x̄))) =

= v#(u1(t̄(x̄)), . . . , un(t̄(x̄)), ū(t̄(x̄)))

with ui(x̄) according to (a). Assume that β∗ holds inM0 and consider
G ∈ G0 and ḡ in G such that G |= α(ḡ). Given (L(G, ḡ), ā) according
to (v), one has ui(ā) = ai for all i whence, due to validity of β∗,

ω(w(ḡ)) = w#(ā|n, ā) = w#(ū(ā)|n), ū(ā)) =

= v#(ū(ā)|n, ū(ā)) = v#(ā|n, ā)) = ω(v(ḡ))

and w(ḡ) = v(ḡ) follows, verifying β for G0.
Conversely, assume that β holds for all G in G0 and consider any

L ∈ M0 and ā = (a1, . . . , aN) in L. That (L, ū(t̄(ā))) is a model of
(Π, c̄) is obtained combining (i) and (ii) and by (iii) it follows that
L |= α#(ū(t̄(ā))|n, ū(t̄(ā))). Thus, by (iv) G := G(L, ū(t̄(ā))|n) is in G0

and α(ū(t̄(ā))|n) holds in G. Now, the quasi-identity β being valid in
G0, it follows G |= γ(ū(t̄(ā))|n, ū(t̄(ā))); that is, the identity β∗ holds
in L for the substitution ā.. �

3. Some projective modular lattice presentations

3.1. Terms and lattices. For concepts of lattice theory we refer to
Birkhoff [1], for modular lattices also von Neumann [23]. For better
readability, joins and meets will be written as x + y and x · y = xy,
assuming associativity, commutativity. and idempotency for both op-
erations. That is, the term algebra FT (x̄) is the free algebra in the
variety T of algebras (A,+, ·) where (A,+) and (A, ·) are commutative
idempotent monoids. Thus, the word problem for free algebras in T
has a (simple) solution and we may use expressions

∑
i ai and

∏
i ai

- to be read as (
∑

i ai) and (
∏

i ai), respectively. For convenience, we
also use the rule that s · t+ u = st+ u reads as (st) + u.

A lattice L is a member of T which satisfies the absorption laws

x(x+ y) = y and x+ xy = x.

For lattices, x ≤ y ⇔ x = xy (we also write y ≥ x) defines a partial
order ≤ and one has a ≤ b if and only if a = a + b. With respect to
this partial order, a + b is the supremum, ab the infimum of a, b. If L
has a smallest resp. greatest element these will be denoted by ⊥L and
>L, respectively. A set {a1, . . . , an} in L such that

∑
i ai = >L and∏

i ai = ⊥L will be called spanning in L. In particular, this applies if
L is generated by a1, . . . , an. For a ≤ b in L, the interval [a, b] = {c ∈
L | a ≤ c ≤ b] is a sublattice of L; an ideal of L is a sublattice I such
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that b ∈ I for any b ≤ a ∈ I. The word problem for free lattices is well
known to be solvable, but for simplicity we prefer to consider terms in
T .

A chain Cn of length n is a presentation with generators di, i =
0, . . . , n, and relations di ≤ di+1, i < n. Obviously, chains are projective
within the class of all lattices.

3.2. Modular lattices. A lattice is modular if it satisfies the identity
x(y + xz) = xy + xz, equivalently, if a(b + c) = ab + c for all c ≤ a.
The class of all modular lattices is denoted by M. Projectivity of
presentations will always refer toM. Examples of modular lattices are
the lattices L(RM) of all submodules of R-modules, with operations +
and ∩.

Fact 3.1. In a modular lattice, x 7→ x+ b is an isomorphism of [ab, a]
onto [b, a+ b] with inverse y 7→ ya.

Accordingly, we define x̄↗ ȳ to stand for the formula
n∧
i=1

(
yi = xi +

n∏
j=1

yj ∧ xi = yi ·
n∑
j=1

xj
)
.

Observe that for x1 ≥ x2 and y1 ≥ y2 one has x1, x2 ↗ y1, y2 if and
only if x1 ≤ y1, x2 ≤ y2, and y2, x2 ↗ y1, x1. Also, x̄ ↗ ȳ and ȳ ↗ z̄
jointly imply x̄↗ z̄. Moreover,, x̄↗ ȳ, x̄↗ z̄ and ȳ ≤ z̄ jointly imply
ȳ ↗ z̄. Writing x̄1 ↗ . . .↗ x̄m we require x̄i ↗ x̄j for all i < j ≤ m.

Call elements a1, . . . , an of a modular lattices relatively independent
(over b) if b = ak ·

∑
i<k ai for all 1 < k ≤ n. This implies that any

permutation of a1, . . . , an is independent over b, too, and that the ai
generate a boolean sublattice B with smallest element b and each ai is
either b or an atoms of B.

Fact 3.2. In a modular lattice, if u, v, w are relatively independent over
t, then (x, y, z) 7→ x+y+z defines an embedding of [t, u]× [t, v]× [t, w]
into [t, u + v + w]. In particular, for t ≤ u′ ≤ u′′ ≤ u, t ≤ v′ ≤
v′′ ≤ v, and t ≤ w′ ≤ w′′ ≤ w the sublattice generated by these 3
chains is isomorphic to the direct product of these chains. and the above
embedding restricts to isomorphisms x 7→ x + v′ of [u′ + w′, u′′ + w′′]
onto [u′+ v′+w′, u′′+ v′+w′′] and y 7→ y+u′ of [v′+w′, v′′+w′′] onto
[u′ + v′ + w′, u′ + v′′ + w′′], respectively.

See Fig. 1. For the proof observe, that one can assume t = 0 and
that the case w = 0 is well known. The analogous result holds for any
number of relatively independent elements.

.
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Figure 1. Direct product of chains

3.3. Products of presentations. Given presentations (Πj, (⊥, c̄j)),
where c̄j = (cj1, . . . , c

j
nj

) for j = 1, 2 with pairwise distinct cji and,

for j = 1, 2, relations in Πj implying ⊥ ≤ cji for all i, the product
(Π1, (⊥, c̄1))×(Π2, (⊥, c̄2)) is the presentation (Π, (⊥, c̄)) with generator
symbols

⊥ and c̄ = (c1
1, . . . , c

1
n1
, c2

1, . . . c
2
n2

)

and, in addition to the relations of the (Πj, (⊥, c̄j)), the relations

n1∑
i=1

c1
i ·

n2∑
k=1

c2
k = ⊥.

Fact 3.2 implies the following well known fact.

Fact 3.3. Within M, products of projective presentations are projec-
tive. Moreover, given models (Lj, (a

j
0, ā

j)) of (Πj, (⊥, c̄j)) in M one
has L1 × L2 a model of the product with generators mapped to (a1

i , a
2
0)

and (a1
0, a

2
k), respectively; moreover, any model of the product of the

presentations is isomorphic to such.

3.4. Frames. Frames have been introduced by von Neumann [23] for
coordinatizing complemented modular lattices. Given n independent
generators ei of an R-module RM , the canonical n-frame in L(RM)
consists of ai = Rei, c1j = R(e1− ej), and a⊥ = {0}. This is mimicked
by the following presentation.
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Figure 2. 2-frame and 3-frame

An n-frame Φ is a lattice presentation with generators a⊥, a1, . . . , an,
c1j = cj1 (2 ≤ j ≤ n) and relations

(1) a⊥ = aj(
∑j−1

i=1 ai)
(2) a⊥ = a1c1j = ajc1j

(3) a1 + aj = a1 + c1j = aj + c1j

where 2 ≤ j ≤ n. See Fig. 2
An equivalent presentation is obtained by replacing a⊥ by a1a2. A

model (inM) of (an) n-frame is referred to as “an n-frame in a modular
lattice”; otherwise, speaking of “an n-frame” we mean a presentation
as above, possibly with renamed generators.

We define a> =
∑n

i=1 ai and write also a> = aΦ
> = >Φ, ai = aΦ

i ,
c1j = cΦ

1j, and a⊥ = aΦ
⊥ = ⊥Φ. The list of generators with indices not

involving fixed k > is written as Φ 6=k. Observe that Φ implies, within
M, the relations of n− 1-frames for Φ6=k and ak + Φ 6=k and that

Φ6=k ↗ ak + Φ 6=k.

Also observe, that the concept of n-frame can be defined, recursively:
start with that of 2-frame, as defined above; now, given the concept
of n-frame Φ, obtain the n+ 1-frame Φ+ adding to the generators and
relations of Φ the generators an+1 and c1,n+1 and relations (2) and (3)

for j = n + 1 - renaming aΦ
⊥ into aΦ+

⊥ . The following is a special case
of Dedekind’s description of 3-generated modular lattices.

.

Fact 3.4. The modular lattice freely generated by a, a′, c such that aa′ ≤
c ≤ a+ a′ has diagram given in Fig. 3. In particular, with b = ac and
d = a(a′ + c) one has a 2-frame b + a′c, d + a′c, b + a′(a + c), c and
b, d↗ b+ a′c, d+ a′c.

3.5. Reduction. Given an n-frame Φ and variables x, y, put

a⊥(x, y) ≡ x+
∑
j>1

aj(x+ c1j) and a>(x, y) ≡ y +
∑
j>1

aj(y + c1j)
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a+ a′

d+ d′

c b+ d′d+ b′ a′a

aa′

b+ b′

b

d′ = a′(a+ c)

b′ = a′c

d

Figure 3. Modular lattice generated by a, a′, c with
aa′ ≤ c ≤ a+ a′

and introduce for each remaining generator symbol c in Φ the term

ĉ(x, y) ≡ c · a>(x, y) + a⊥(x, y).

Observe that for all models of Φ in a modular lattice L and b, d in L with
a⊥ ≤ b ≤ d ≤ a1 one has the identity ĉ(b, d) = (c + a⊥(b, d)) · a>(b, d).
Let Φ(x, y) = Φy

x denote the list of terms ĉ(x, y), c a generator symbol
of Φ; this is called the reduction setup for n-frames.

If Φ is part of a presentation Π and b, d are terms over Π then Φb
d is

obtained substituting b, d for x, y; Φb
d is called the reduction of Φ via

b, d. We put Φb = Φb
a⊥

and Φd = Φa1
d .

If B ⊆ D are left-ideals of the ring R, then the reduction of the
canonical n-frame of L(RR

n) by b = Be1 ≤ d = De1 is given by

a′⊥ =
n∑
i=1

Bei, a
′
i = a′⊥ +Dei, c

′
1j = a′⊥ +D(e1 − ej), a′> =

n∑
i=1

Dei.

See [7, Lemma 1.1] and Fig. 4 for the following.
.

Lemma 3.5. For any n-frame Φ and a⊥ ≤ b ≤ d ≤ a1 in a modular
lattice, L, one has the following

(1) Φb
d is an n-frame in L.
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a⊥

a′⊥

b

d

Figure 4. Reduction 2-frame (Φ, ai, c12) to (Φb
d, a
′
i, c
′
12)

(2) d, b↗ (a1)Φbd , (a⊥)Φbd ↗
∑

Φb
d,
∑

i 6=1 a
Φbd
i ↗

↗ d+
∑

i 6=1 ai, b+
∑

i 6=1 ai.

(3) a
Φbd
> ·

∑
Φ 6=1, a

Φbd
⊥ ·

∑
Φ 6=1 ↗ (Φb

d) 6=1, a
Φbd
⊥ .

(4) (Φ6=k)
b
d ↗ (Φb

d) 6=k ↗ (ak)
Φbd + (Φb

d)6=k ↗ (ak + Φ 6=k)
ak+b
ak+d

for k > 1..
(5) If b = a⊥ and d = a1 then Φb

d = Φ.

3.6. Towers of 2-frames. An n-tower of 2-frames is a presentation
∆(n) = ∆(2, n) which is the disjoint union of 2-frames (Φk, ak⊥, a

k
i , c

k
1j),

k = 1, . . . , n, with the additional relations

ak>, a
k
2 ↗ ak+1

1 , ak+1
⊥ for 1 ≤ k < n.

It follows that an2a
1
1 = a1

⊥ and an2 + a1
1 = an>. Referring to the reduction

setups Φk(x, y) of the 2-frames Φk, define the reduction setup ∆(n)(x, y)
as the union of the Φk(x + ak⊥, y + ak⊥) and the reduction ∆(n)bd =
∆(n)(b, d). The following is due to Alan Day [3, Thm.5.1]

Lemma 3.6. (i) Within M, n-towers of 2-frames are projective.
(ii) FM(∆(n)) is the disjoint union of 5-element interval sublat-

tices Φk ∪ {ak>}.
(iii) FM(∆(n)) is generated by the n + 2-elements a1

1, a
n
2 , c

k
12(1 ≤

k ≤ n).
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Figure 5. Reduction of ∆(2)

(iv) If ∆(n) is an n-tower of 2-frames in a modular lattice L and
if a1

⊥ ≤ b ≤ d ≤ a1
1 then ∆(n)bd is an n-tower of 2-frames

a′k⊥, a
′k
1 , a

′k
2 , c

′k
12 in L and with u = an2 ≥ u′′ = ua′n2 ≥ u′ = ua′1⊥

and w = a1
1 ≥ w′′ = d ≥ w′ = b ≥ a1

⊥ one has uw = a1
⊥,

a′1⊥ = u′ + w′, and a′n> = u′′ + w′′. Moreover, if d = a1
1 then

w′′ = w and u′′ = u. If, in addition, b = a1
⊥ then ∆(n)bd = ∆.

Proof. (i)-(iii) are in [3]. (iv) follows from (1) and (2) of Lemma 3.5,
readily. See Fig. 5. �

.

3.7. Towers of 3-frames. An n-tower of 3-frames is a presentation
∆(3, n) consisting of the product of an n-tower ∆(n) of 2-frames with
the chain a1

⊥ ≤ a1
3 and an additional generator c1

13 such that the
a1
⊥, a

1
1, a

1
3, c

1
13 form a 2-frame Φ. In particular, by Fact 3.2 an2 (a1

1 +a1
3) =

a1
⊥ = (a1

1 + a1
2)a1

3 whence Φ1 together with a1
3, c

1
13 forms a 3-frame. See

Fig. 6

Lemma 3.7. n-towers of 3-frames are projective within M.

Proof. By Facts 3.3, 2.1, and Lemma 3.6, the product of ∆(n) with the
chain a1

⊥ ≤ a1
3 is projective within M and strengthening with

c1
13 := (c1

13 + a1
⊥)(a1

1 + a1
3)
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Figure 6. 2-tower of 3-frames

yields the additional relations a1
⊥ ≤ c1

13 ≤ a1
1 + a1

3. Now, in view of
Fact 3.4 put

b = a1
1c

1
13 and d = a1

1(c1
13 + a1

3)

(∗) v = a1
3 ≥ v′′ = a1

3(a1
1 + c1

13) ≥ v′ = a1
3c

1
13 ≥ a1

⊥

to obtain the 2-frame Φ′ = (b+v′, d+b+v′, v′′+b, c1
13+b+v′, d+v′′). Now,

together with the chains defined in (iv) of Lemma 3.6, apply Fact 3.2
to obtain the n-tower v′ + ∆(n)bd spanning [u′ + w′ + v′, u′′ + w′′] and
the 2-frame u′ + Φ′ spanning [u′ + w′ + v′, w′′ + v′′]. This verifies the
strengthening

∆(n) := v′ + ∆(n)bd, a
1
3 := u′ + w′ + v′ + a1

3, c
1
13 := u′ + w′ + v′ + c1

13

and proves the lemma. �

The reduction setup ∆(3, n)(x, y) is the union of ∆(n)(x, y) and
Φ(x, y).

Corollary 3.8. (i) If ∆(3, n) is an n-tower of 3-frames in a mod-
ular lattice L and if b, d ∈ L such that a1

⊥ ≤ b ≤ d ≤ a1
1 then

∆(3, n)bd := ∆(3, n)(b, d) is also an n-tower of 3-frames in L
and spans the interval [u′+w′+v′, u′′+w′′+v′′] with the chains
from (∗) and (iv) of Lemma 3.6.

(ii) Redefining two of the chains into one, namely u := u + v ≥
u′′ := u′′ + v′′ ≥ u′ := u′′ + v′′, so one has that ∆(3, n)bd spans
the interval [u′+w′, u′′+w′′]. Moreover, if d = a1

1 then w = w′′

and u = u′′.
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Figure 7. Skew (3, 2)-frame (Φ′, a′i, c
′
1j; Φ, ai, c12)

3.8. Towers of skew frames. A skew (n + 1, n)-frame is the lattice
presentation Ψ given by the product of an n-frame Φ with the chain
a⊥ ≤ a′n+1 and an additional generator c′1,n+1 such that the list of terms
a⊥, b = a1(a′n+1 +c′1,n+1), a′n+1, c

′
1,n+1 satisfies the relations of a 2-frame.

See Fig. 7.
An n-tower Ω(m,n) of skew (m,m − 1)-frames is the presentation

given as the product of an n-tower ∆(m − 1, n) of m − 1-frames with
the chain a1

⊥ ≤ a′m and an additional generator c′1m subject to relations
stating that a1

⊥, a
1
1(a′m + c′1m), a′m, c

′
1m is a 2-frame. Compare Fig. 8 for

the case of towers of skew (3, 2)-frames. Dealing with the case m = 4,
we put Ω(n) = Ω(4, n) and speak of n-towers of skew frames.

Theorem 3.9. n-towers of skew frames can be defined in terms of n+6
generators and are projective within M.

Proof. n+ 2 generators provide the n-tower of 2-frames, 2 more the n-
tower of 3-frames, and another 2 are used to turn this into an n-tower
of skew frames.

Omitting the relations concerning c′14, projectivity withinM follows
from Lemma 3.7 and Facts 3.3, 2.1. A first strengthening

c′14 := (c′14 + a1
⊥)(a1

1 + a′4)

adds the relations a1
⊥ ≤ c′14 ≤ a1

1 +a′4. In view of Fact 3.4 put b = a1
1c
′
14

and v = v′′ = a′14 (a1
1 + c′114) ≥ v′ = a′14 c

′1
4 and let M denote the interval

[b + v′, a1
1 + v′] of the sublattice generated by a1

1, a
′1
4 , c

′1
14. Consider the
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Figure 8. 2-tower of skew (3, 2)-frames

reduction ∆(3, n)b
a1

1
and apply Fact 3.2 to the chains u′ = u′′ ≥ u′ and

w = w′′ ≥ w′ from (ii) of Cor.3.8 and v = v′′ ≥ v′. This yields the
n-tower v′ + ∆(3, n)b

a1
1

spanning [u′ + v′ + w′, u + v′ + w] and u′ + M

spanning [u′ + v′ + w′, u′ + v + w] and verifies the final strengthening

∆(3, n) := ∆(3, n)ba1
1
, c′114 := c′114 + u′, a′14 := (a1

1 + u′ + v′)(c′114 + v + u′).

�

The presentations n-tower of 2- resp. 3-frames and n-tower of skew
(4, 3)-frames have been constructed explicitly and uniformly for all n.
This results in the following.

Corollary 3.10. There is an algorithm constructing for each n the
presentation Ω(n), projective within the class of modular lattices.
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4. Structure of towers of skew frames

While projectivity within M of the presentation “n-tower (of skew
frames)” has been established in Theorem 3.9, in this section we col-
lect the needed concepts and results about models of this and related
presentations - considered as lists of elements or configurations. Maps
are supposed to match such lists. If such list is the concatenation of
parts we say that it is obtained by combining these parts. We will use
ā to denote lists of elements, in general, not necessarily the a1, . . . , an
of an n-frame.

First, we recall some more details about particular elements in sub-
lattices generated by (skew) frames - used in equivalent presentations
e.g. in [12].

4.1. Frames. A well known equivalent definition of frames is obtained
es follows cf. [6]. Consider an n-frame Φ in a modular lattice L and
define cij = cji = (ai + aj)(c1i + c1j) for 1 6= i 6= j 6= 1, Then it follows

(
∑
i∈I

ai) · (
∑
j∈J

aj) =
{ a⊥ if I ∩ J = ∅∑

k∈I∩J ak else
for I, J ⊆ {1, . . . , n},

and for pairwise distinct i, j, k

ai + aj = ai + cij, ai · cij = a⊥,

cik = (ai + ak) · (cij + cjk).

We also write ⊥Φ = aΦ
⊥, a

Φ
i , c

Φ
ij for these elements and >Φ =

∑n
i=1 ai.

Observe that, for any k, the ai, cij with i, j 6= k form an n − 1-frame
Φ 6=k in L. An important property of frames Φ is the existence of the
perspectivities πkl = πΦ

kl, k 6= l, that is lattice isomorphisms between
intervals of L matching Φ6=k with Φ 6=l

πkl : [a⊥,
∑
i 6=k

ai]→ [a⊥,
∑
i 6=l

ai] where πkl(x) = (x+ ckl)
∑
i 6=l

ai.

Thus, πΦ
kl(a) is obtained from a lattice term π̂kl(x, z̄) substituting a for

x and Φ for z̄ (actually, we use only the case where Φ is a 4-frame.)

4.2. Reduction of frames. Given a frame Φ and b1 ∈ L such that
a⊥ ≤ b1 ≤ a1, define

bj = aj(b1 + c1j) for j 6= 1, b =
n∑
j=1

bi, and bij = (bi + bj)cij

to obtain, by upper reduction with b1, the frame

Φb1 = Φb1
a⊥

= (b, b+ ai(1≤i≤n), b+ cij(i 6=j))
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and by lower reduction the frame

Φb1 = Φa1
b1

= (a⊥, bi(1≤i≤n), bij(i 6=j)).

In view of the perspectivities, in both cases the resulting frame is the
same if, for some i 6= 1, the construction is carried out based on a⊥ ≤
bi ≤ ai such that b1 = a1(bi + c1i).

4.3. Stable elements. Given a modular lattice L, element s of L and
an n-frame Φ in L, the element s is j-stable in L for Φ and j ≥ 2 if

sa1 = saj = a⊥ and s+ a1 = s+ aj = a1 + aj

and for all b1 ∈ L with a⊥ ≤ b1 ≤ a1 one has

s+ b1 = s+ bj where bj = aj(b1 + c1j).

Obviously, if Φ′ is another n-frame in L such that a⊥, a1, aj, c1j ↗
a′⊥, a

′
1, a
′
j, c
′
1j in L then s is j-stable for Φ if and only if s + a′⊥ is j-

stable for Φ′. Also, in view of the perspectivities, if s is j-stable for
Φ then πjk(s) is k-stable for Φ. This crucial concept is due to Ralph
Freese [8]. See [12, Lemma 2,3] for the following

Fact 4.1. If s is j-stable in L for Φ then for all b ∈ L with a⊥ ≤ b ≤ a1,
one has s+ aΦb

⊥ j-stable for Φb and saΦb
> j-stable for Φb.

.

4.4. Skew frames. Using the above view (Subsection 4.1) on frames
in modular lattices, an equivalent definition of a skew (n+ 1, n)-frame
Ψ = (Φ′,Φ) in a modular lattice L is that of a configuration which is
composed by the n-frame Φ and the n+1-frame Φ′ such that Φ′6=n is the
reduction Φa′1

, in particular a⊥ = a′⊥. Observe that the perspectivity
πkl of Φ induces the perspectivity πkl of Φ′6=n. We will deal with the
cases (3, 2) and (4, 3), only.

Our basic example of a skew (4, 3)-frame is as follows: For a prime
p consider the Z-module A with generators ei, i = 1, 2, 3, 4 and rela-
tions p2ei = 0 for i ≤ 3, pe4 = 0. Then a skew (4, 3)-frame in the
submodule lattice L(A) is obtained as follows: Let a⊥ = 0, ai = Zei,
cij = Z(ei − ej), a′i = Zpei, c′ij = Z(pei − pej), for i, j ≤ 3, a′4 = Ze4,
and c′i4 = Z(pei − e4).

Dealing with a skew (4, 3)-frame Ψ we consider Ψ(3,2) given by gen-

erators not involving index 2 and Ψ(3,2) = a2 + Ψ(3,2). Observe that

Ψ(3,2) ↗ Ψ(3,2) and that the relations of a skew (3, 2)-frame are implied
by those of a skew (4, 3)-frame, in both cases.
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For a⊥ ≤ b ≤ a′1 ≤ d ≤ a1 in L the lower reduction Ψb,d is the skew
(n + 1, n)-frame which combines the lower reductions Φ′b and Φd. For
a⊥ ≤ b ≤ a′1 in L the upper reduction Ψb combines the upper reductions
Φ′b and Φb.

4.5. Towers of skew frames.

Observation 4.2. Within M a presentation equivalent to that of an
n-tower Ω(n) is given by a list ā combining the skew (4, 3)-frames Ψk =
(Φ′k,Φk) (1 ≤ k ≤ n) each consisting of the 4-frame Φ′k and the 3-frame
Φk where

Φ′k = ā′k = (a′ki , c
′k
ij | i, j ≤ 4, i 6= j), Φk = āk = (aki , c

k
ij | i, j ≤ 3, i 6= j)

such that

(∗) Ψk
(3,2) ↗ (Ψk)(3,2) ↗ Ψl

(3,2) ↗ (Ψl)(3,2) for 1 ≤ k < l ≤ n.

Observe that Ψk
(3,2) consists of the aki , c

k
ij, a

′k
i , c

′k
ij where i, j 6= 2 and

that (Ψk)(3,2) = ak2 + Ψk
(3,2). The exceptional role of index 2 (linked to

the “upward direction”) comes out of the construction of n-towers and
fits to the application of [12].

Proof. Recall the definition of n-towers Ω(n) of skew frames in Subsec-
tion 3.8 and observe that the a1

i , c
1
ij, a

′1
i , c

′1
ij form a skew (4, 3) frame

Ψ1, that an2 , a
1
1, a

1
3, a
′1
4 are relatively independent over a1

⊥, and that
ak1 = ak⊥ + a1

1. Thus, Ψ1
(3,2) is a skew (3, 2)-frame whence so is (for

each k > 1) ak⊥ + Ψ1
(3,2) which combines with ak2, c

k
12 to form a skew

(4, 3)-frame Ψk such that Ψ1
(3,2) ↗ Ψk

(3,2). This proves (∗) in view of
the remarks following Fact 3.1 and applies also to skew frame as con-
sidered in the preceding Subsection. �

A model is obtained from the submodule lattice of the free Z module
with generators e1, e2, e3, e4 and relations p2e1 = 0, p3n−1e2 = 0, p2e3 =
0 and pe4 = 0. Indeed, put (where i = 1, 3)

ak⊥ = Zp3(n−k)+2e2, a
k
2 = Zp3(n−k)e2, c

k
2i = Z(p3(n−k)e2 − ei)

aki = ak⊥ + Zei, ck13 = ak⊥ + Z(e1 − e3), cki2 = ak⊥ + Z(ei − p3(n−k)e2)

a′k2 = Zp3(n−k)+1e2, c
′k
2i = Z(p3(n−k)+1e2−pei), c′k24 = Z(p3(n−k)+1e2−e4),

a′ki = ak⊥ + Zpei, c′k13 = ak⊥ + Z(pe1 − pe3), c′ki4 = ak⊥ + Z(pei − e4).
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4.6. Reduction of towers. Given an n-tower Ω(n) = ā in a modular
lattice L, consider fixed m > 0 and b, d ∈ L such that

am⊥ ≤ b ≤ a′m1 ≤ d ≤ am1 .

The lower reduction Ω(n)b,d of Ω(n) combines the following reductions
of skew-frames Ψk = (Φ′k,Φk)

(Φ′k
ak1b
, Φk

ak1d
) for 1 ≤ k < m

(Φ′mb , Φm
d )

(Φ′k
b+ak⊥

, Φk
d+ak⊥

) for m < k ≤ n

Given b ∈ L such that
am⊥ ≤ b ≤ a′m1

the upper reduction Ω(n)b of Ω(n) combines the following reductions
of skew-frames Ψk = (Φ′k,Φk)

((Φ′k)a
k
1b, (Φk)a

k
1b) for 1 ≤ k < m

((Φ′m)b, (Φm)b)

((Φ′k)b+a
k
⊥ , (Φk)b+a

k
⊥) for m < k ≤ n

We speak of the lower resp. upper reduction of Ω(n) induced by the
reduction of Ψk.

Observation 4.3. If the configuration Ω(n) is an n-tower of skew
frames Ψk = (a′k, c′kij , a

k, ckij) in a modular lattice, L, then so are any
of its lower reductions Ω(n)b,d where b, d ∈ L and any of its upper
reductions Ω(n)b where b ∈ L. Moreover, if φ : L → L′ is a ho-
momorphism into a modular lattice L′ such that φ(b) = φ(a′m⊥ ) and
φ(d) = φ(am1 ) resp. φ(b) = φ(am⊥ ) then φ(Ω(n)) = φ(Ω(n)b,d) resp.
φ(Ω(n)) = φ(Ω(n)b), as configurations in L′.

5. Coordinates and characteristic

5.1. Coordinate ring. Following von Neumann [23] (cf. Freese [6,
7, 8] and [13, Lemma 6]) with any 4-frame Φ in a modular lattice
L and choice of 3 different indices (here we use 1, 3, 4) one obtains
a (coordinate) ring R(Φ, L) with unit c13 and zero a1, the elements
of which are the r ∈ L such that ra3 = a⊥ and r + a3 = a1 + a3.
More precisely, there are binary lattice terms x ⊕z̄ y and x ⊗z̄ y and
a unary term 	z̄x defining these coordinate rings. Here, one has z̄ =
(zi, zij|i, j 6= 2) corresponding to the 3-frame (ai, cij|i, j 6= 2). For given
L and Φ these rings are isomorphic for any choice of the triple of indices
- via the perspectivities resp. compositions thereof.

If L embeds into the the subgroup lattice of an abelian group A and
if Φ = (ai, cij | i, j 6= 2) is a 3-frame in L then the above definitions
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apply to obtain the ring R(Φ, L), embedded into the endomorphism
ring of the associated subquotient of A.

An element r of R(Φ, L) is invertible if and only if ra1 = a⊥ and
r + a1 = a1 + a3; these form the group R∗(Φ, L) of units in the ring
R(Φ, L). Moreover, there is a lattice term t(x, z̄) such that t(r, ā) is
the inverse of r if r is invertible.

5.2. Stable elements. Obviously, 3-stable elements are invertible.
Again, the following crucial tool is due to Ralph Freese [8].

Lemma 5.1. For a modular lattice L containing a 4-frame Φ as above
one has the following.

(i) The elements of L which are 3-stable for Φ in L form a subgroup
R#(Φ, L) of the group R∗(Φ, L) of units.

(ii) For each b ∈ L with a⊥ ≤ b ≤ a1 the map r 7→ r + ⊥Φb is a
homomorphism βb : R#(Φ, L)→ R#(Φb, L).

(iii) If r is 3-stable for Φ and b = a1(r+ c13) then βb(r) = cΦb

13 is the
unit of R#(Φb, L).

Proof. (i) and (ii) are Lemma 1.3-6 of [8]. For convenience, we prove

(iii). With b = ⊥Φb one has r+b = r+b+b = (a1+r)(c13+r)+b ≥ c13+b
and equality follows since by (ii) both are complements of a3 + b in
[b, b+ a1 + a3]. �

5.3. Characteristic. With the term x ⊕z̄ y of Subsection 5.1, define
recursively, 1⊗z̄ z14 = z14 and (n+ 1)⊗z̄ z14 = z14⊕z̄ (n⊗z̄ z14). In the
sequel, p will be a fixed prime. The 4-frame Φ = ā has characteristic p
if p⊗ā c14 = a1. Ralph Freese [6] has shown that, for any frame Φ = ā
in a modular lattice L, the frame Φa1(p⊗āc14) has characteristic p - and
equals Φ if Φ has characteristic p, already.

Let (z̄′, z̄) denote a list of variables to be used for substituting skew
(4, 3)-frames. In [12, p. 516], a term p32(z̄) has been defined and a skew
(4, 3)-frame (Φ′,Φ) = (ā′, ā) has been called of characteristic p × p if
Φ′ is of characteristic p and p32(ā) ≥ a′3 and a3 +p32(ā) = a′2 +p32(ā) =
a′2 + a3. The following is [12, Lemma 9] (in the proof given, there,
observe that b3 ≥ a′3 since p32 ≥ a′3).

.

Lemma 5.2. There are terms b∗(z̄′, z̄) and d∗(z̄′, z̄) such that for any
skew (4.3)-frame Ψ = (Φ′,Φ) in a modular lattice L one has

a⊥ ≤ b := b∗(ā′, ā) ≤ a′1 ≤ d := d∗(ā′, ā) ≤ a1

and obtains Ψb,d of characteristic p× p. Moreover, if Ψ has character-
istic p× p then b = a⊥ and d = a1, that is Ψb,d = Ψ.
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As in Freese’s result, one can derive projectivity but, in contrast, it
appears unlikely that characteristic p×p is preserved under reductions.
Though, the existence of stable elements is preserved (see Fact 4.1). Re-
call the term g∗1(z̄′, z̄) from [12, Cor.13] and, applying the “perspectivity
term” π̂23 define

g+(z̄′, z̄) = π̂23(g∗1(z̄′, z̄), z̄′).

Lemma 5.3. For any skew (4, 3)-frame Ψ = (Φ′,Φ) = (ā′, ā) of char-
acteristic p × p in a modular lattice L, one has g+(Ψ) = g+(ā′, ā) an
element of L which is 2-stable for Φ′.

Proof. According to [12, Cor.13] one has g∗1(ā′, ā) a 2-stable element of
R(Φ′) and the claim follows via perspectivity. �

6. Glueing constructions

Extending early work of Dilworth and Hall, analysis and construction
of lattices L as unions of interval sublattices have been studied by
several authors, see [9, 5] and [12, Section 3]), also [4] for a survey.
Here, we need only the special case where L and the “skeleton” S
are finite modular lattices. Though, without additional effort, one can
allow arbitrary bounded lattices L and skeletons S which are modular
of finite height.

6.1. Glueing construction of Dilworth and Hall. Given intervals
Li = [ai, bi], i = 1, . . . , n, in a modular lattice, L, such that ai ≤ ai+1

and bi ≤ bi+1 for 1 ≤ i < n, the union of these intervals is a sublattice
of L and one has isomorphisms αi : [ci, bi] → [ai+1, di], i < n, with
αi(x) = x + ai+1 (and inverse α−1

i (y) = biy) where ci = biai+1 and
di = bi + ai+1.

Conversely, given pairwise disjoint modular lattices Li = [ai, bi] (i ≤
n) and isomorphisms αi : [ci, bi]Li → [ai+1], di+1]Li+1

(i < n) where
ci ∈ Li and di+1 ∈ Li+1 there is a modular lattice L, the Dilworth-Hall
glueing, which is the union of interval sublattices Li, related as above.

Also, one obtains a homomorphic image of L in which the intervals
[ci, bi] and [ai+1, di] are identified via αi.

6.2. Decomposition of lattices as glued sums. In the sequel let S
a modular lattice of finite height with bottom 0 and top 1. We write
x ≺ y if x is a lower cover of y in S.

Consider a lattice M , a join embedding σ : S → L, and a meet
embedding π : S → L such σy ≤ πx for all x ≺ y in S.- Then the union
L of interval sublattices Lx = [σx, πx], x ∈ S. of L is a sublattice of
M . L is called an S-glued sum of the Lx, (x ∈ S). L has greatest
element 1 = π(1) and smallest element 0 = σ(0).
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If L′ is another S glued sum given by σ′, π′ then L is isomorphic to
L′ if and if there are isomorphisms χx : Lx → L′x such that χx and χy
both induce, for x ≺ y, the same isomorphism of Lx∩Ly onto L′x∩L′y.

Clearly, if T = [u, v] is an interval sublattice of S then
⋃
x∈T Lx

is a T -glued sum and an interval sublattice of L. This allows to use
induction over the height of S.

Observe that given x < y in S, a ∈ Lx, and b ∈ Ly, one has a ≤ b if
and only if for some/each chain x = x1 ≺ x2 . . . ≺ xn = y in S one has
ai ∈ Lxi ∩ Lxi+1

a ≤x1 a1 ≤x2 a2 . . . ≤xn−2 an−1 ≤xn an = b.

Claim 6.1. An S-glued sum L is simple of so are the Lx (x ∈ S).

Proof. For any homomorphism φ of L onto L′ one has φ(σ(x)) =
φ(π(x)) for all x ∈ S since the Lx are simple. If x ≺ y in S then σy ≤ πx
whence φ(σ(y)) ≤ φ(π(x)) = φ(σ(x)) and it follows φ(σ(x)) = φ(σ(y))
for all x ≤ y, in particular φ(0) = φ(σ(0)) = φ(σ(1)) = φ(π(1)) = φ(1).

�

6.3. Modularity.

Lemma 6.2. Any S-glued sum L of modular lattices Lx is modular.

Proof. Consider b ≤ a and c in L such that ac ≤ b ≤ a ≤ b + c. Let
a ∈ Lu, b ∈ Lv, and c ∈ Lw. From σv ≤ b ≤ a ≤ πu one obtains
σ(uv) ≤ σv ≤ b ≤ (πu)(πv) = π(uv) which allows to assume v ≤ u.
Now π(v + w) ≥ b + c ≥ a so that w.l.o.g. v + w = 1. Dually, one
may assume uw = 0 whence v = u by modularity of S. If 0 ≺ x < u
then w ≺ x + w < 1 and, by induction, [σx,1] and [0, π(w + x)] are
modular. whence Dilworth-Hall applies. Similarly, if 0 ≺ x < w. This
leaves the case that u,w are atoms or 0. If, say, u = 0 then one has the
Dilworth-Hall glueing [0, πu]∪ [σw, 1] whence modularity of L. If both
u,w are atoms then [0, πu] and [σw, 1] are modular by Dilworth-Hall
and then so is L.

To prove the second claim, choose x ≺ 1; by inductive hypothesis,
there is a maximal chain

�

6.4. Calculations in glued sums. We write σx = 0x and a +x b =
a + b for a, b ∈ Lx. For maximal chains C in intervals [x, z] of S and
a ∈ Lx we define, recursively, a+C 0x = a if C = {x} and

a+C 0z = (a+D 0u) +u 0z where D = C \ {z} and u ≺ z, u ∈ C

a+C c = (a+C 0z) +z c for c ∈ Lz.
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Now, for a ∈ Lx, b ∈ Ly, z = x+ y, and maximal chains C in [x, z] and
D in [y, z] define

a+C,D b = (a+C 0z) +z (b+D 0z).

The following is obvious, as is its dual.

Claim 6.3. (i) a +C c = a + c for all x ≤ z in S, a ∈ Lx, c ∈ Lz
and maximal chains C in [x, z].

(ii) a+C,D b = a+ b for all x, y in S, a ∈ Lx,, b ∈ Ly, and maximal
chains C in [x, x+ y], D in [y, x+ y].

The dual results hold for meets.

For our main result it will be crucial that certain calculations can be
carried out in a partial sublattice of L. We introduce some notation
which will be useful later. For x ≺ y in S we put 0y,x = σy and
1y,x = πx.

Now, given P ⊆ S2 where x ≺ y for all (x, y) ∈ P let L|P =⋃
(x,y)∈P (Lx∪Ly) endowed with the partial operations a+P b = c if and

only if a, b ∈ Lx for some (x, y) ∈ P and c = a+x b or if a ∈ Lx, b = 0y,
and c = a+x 0y,x for some (x, y) ∈ P or, similarly, interchanging a with
b. Partial meets are defined, dually. In view of Claim 6.3 any calcula-
tion in L can be composed by calculations in L|P where (x, y) ∈ P for
all x ≺ y.

6.5. Glueing of sets. Again, S is a finite height modular lattice. In
particular, S is a directed graph with edges (x, y) where x ≺ y. Thus,
a chain x1 ≺ x2 . . . ≺ xn is a (directed) path from x1 to xn.

A glueing of a family Lx(x ∈ S) of pairwise disjoint sets is given by
injective partial maps γyx : Lx → Ly, x ≺ y, such that

(∗) γx+y,xγx,xy = γx+y,yγy,xy for xy ≺ x, y ≺ x+ y.

We put γx,x = γC the identity on Lx where C = {x}. Observe that
these conditions are satisfied if one replaces the order by its dual and
the γy,x by their inverses. This provides the counterparts of concepts
and results.

Now, for a chain C = {x1 ≺ x2 . . . ≺ xn} define

γC = γxn,xn−1 ◦ . . . ◦ γx2,x1 : Lx1 → Lxn

which is again an injective partial map, possibly empty.

Claim 6.4. (i) If C,D are maximal chains in [x, z] then γD = γC.
(ii) If Ci is a maximal chain in [x11x21, xini ] for i = 1, 2 then there

are maximal chains Di in [xni , x1n1 + x2n2 ] such that γD1γC1 =
γD2γC2.
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Proof. To prove (i) we proceed by induction on the height of [x, z].
Consider x ≺ u, v, u ∈ C, v ∈ D and the maximal chains C ′ = C \ {u}
in [u, z] and D′ = D \ {v} in [v, z]. If u = v then one has γC =
γC′γux = γD′γux = γD by inductive hypothesis. Now, assume u 6= v
and w = u+v. Choose a maximal chain E in [w, z]. Again by induction
and by (∗), one has

γC = γC′γux = γEγwuγux = γEγwvγvx = γD′γvx = γD.

To prove (ii) let Dj the image of Ci under the isomorphism x 7→ x+xjnj
of [x11x21, xini ] onto [xjnj , x1n1 + x2n2 ] for {i, j} = {1, 2}. �

For ai ∈ Lxi (i = 1, 2) define a1 ∼ a2 if and only if there are maximal
chains Ci in [xi, x1 + x2] such that γC1a1 = γC2a2. In view of the dual
of (ii) in Claim 6.4 one has a1 ∼ a2 if and only if there are maximal
chains Di in [x1x2, xi] such that γ−1

D1
a1 = γ−1

D2
a2.

Claim 6.5. ∼ is an equivalence relation on
⋃
x∈S Lx which restricts to

identity on each Lx.

Proof. For ai ∈ Lxi consider chains Ci, Di witnessing ai ∼ ai+1 for
i = 1, 2; that is γCi(ai) = γDi(ai+1). By (ii) of Claim 6.4 there are
chains E1, E2 such that γE1γD1(a2) = γE2γC2(a2) whence γE1γC1(a1) =
γE2γD2(a3) and so a1 ∼ a3. If x1 = x2 = x then C1 = D1 = {x} and
γC1 = γD1 is identity of Lx whence a1 = a2. �

We write M =
(⋃

x∈S Lx
)

and L = M/ ∼ and denote the equivalence
class of a by [a]. The following is immediate by (ii) of Claim 6.4 and
its dual.

Claim 6.6. For each a ∈ M there are largest u resp. smallest v in S
such that Lu ∩ [a] 6= ∅ resp. Lv ∩ [a] 6= ∅.

We write u = λ(a), v = µ(a) and observe that for all y with µ(a) ≤
y ≤ λ(a) one has unique b = τy(a) ∈ Ly ∩ [a]. We also write µ∗(a) for
the unique b ∈ Lµ(a) such that a ∼ b and λ∗(a) for the unique c ∈ Lλ(a)

such that a ∼ c.

6.6. Glueing of posets. Now, assume each Lx(x ∈ S) to be endowed
with a partial order ≤x, each with smallest element 0x and greatest
element 1x. Also, assume the γyx, x ≺ y in S, to be order isomorphisms
γy.x : [0y,x, 1x]Lx → [0y, 1y,x]Ly , mapping an interval of Lx onto an
interval of Ly. Moreover, it is required that 0x <x 0y,x and 1y,x <y 1y.

Again, observe that these conditions are satisfied if one replaces the
order by its dual and the γy,x by their inverses.

Observe that for x ≺ y ≺ z the map γzx = γzy ◦ γyx is either empty
or an order isomorphism [0z,x, 1x]Lx → [0z, 1z,x]Lz where 0z,x = γ−1

zx (0z)
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and 1z,x = γzx(1x). Thus, for a maximal chain C in [x, y], γC is either
empty or an order isomorphism [0y,x, 1x]Lx → [0y, 1y,x]Ly .

For a, b ∈ M define a ≤0 b if and only a ∈ Lx and b ∈ Ly for some
x ≤ y and if there are x = x0 ≺ x1 . . . ≺ xn = y and ai, bi ∈ Lxi
(0 ≤ i ≤ n) such that a = b0 ≤x0 a1, bi = γxixi−1

ai (1 ≤ i ≤ n),
bi ≤xi ai+1 (1 ≤ i < n), and an+1 = b. Here, put a <0 b if bi <xi ai+1

for some 0 ≤ i < n. Observe that a ∼ b, otherwise. Clearly, ≤0 is
transitive.

Observe that applying the above scheme to S ′ = [u, v] and
⋃
x∈S′ Lx

one obtains the restriction of ≤0 for this subset of M . Thus, one may
proceed by induction on the height of S. In particular, with a ≤0 b
witnessed as above, one has γ1xibi ≤1 γ1xiai+1. Now, for a, b ∈ M
define

[a] ≤ [b] if and only if there are a′ ∼ a, b′ ∼ b such that a′ ≤0 b′.

Claim 6.7. (L,≤) is a partially ordered set such that the fol-
lowing hold for all x, y ∈ S and a, b ∈M .

(i) For a, b ∈ Lx one has a ≤x b if and only if [a] ≤ [b].
(ii) x 7→ [0x] is an order embedding of S into L and [0x] ≤ [b] if and

only if x ≤ λ(b).
(iii) [0x+y] = sup([0x], [0y]) in (L,≤) for all x, y ∈ S.

Proof. We claim that a <0 b implies [a] 6= [b]. To prove this, we derive
a contradiction from assuming a <0 b and b ≤ γyxa. Proceeding by
induction, it suffices to consider x = 0 and y = 1 in the definition of
<0. Thus, we have 01,0 ≤ a = b0 ≤0 a1 and γ1,0a1 ≥ γ1,0a ≥ b. If
a = a1 then we apply induction for S ′ = [x1,1]. If there is j > 0 such
that bj <xj aj+1 then a1 <

0 b and we are done by induction. Otherwise,
bj = aj+1 for all j > 0, a <0 a1, and γ1,0a1 = b ≤1 γ1,0a <1 γ1,0a1

contradicting the requirement that γ1,0 is an order isomorphism. It
follows that [a] ≤ [b] ≤ [a] implies [a] = [b] proving that ≤ is a partial
order on L.

To prove (i), consider a <0 b′ ∼ b; one may assume b′ = γzxb with
z ≥ x and, in view of induction, x = 0 and z = 1. Thus, γz,0b is
defined for all z. Now choose u ≤ v in S with (u, v) minimal in S2 such
that there are a′ ∈ Lu and b′′ ∈ Lv with γu,0a <u a

′ ≤0 b′′ ∼ b. By
minimality of v one has u = v and so a′ ≤u b′′. Since γ−1

u,0b
′′ is defined,

so is γ−1
u,0a

′ and it follows a = γ−1
u,0γu,0a <0 γu,0a

′ ≤0 γ
−1
u,0b

′′ = b. The
converse is obvious.

The first claim in (ii) follows, immediately, from 0x <x 0y,x ∼ 0y for
x ≺ y. In 0x ≤0 b we may assume b ∈ Lλ(b) and conclude x ≤ λ(b)
from the definition of ≤0. The converse is obvious by this definition.
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Ad (iii). By (ii) we have b ≥0 0x, 0y if and only if λ(b) ≥0 x, y, that
is λ(b) ≥ x + y, which in turn is equivalent to 0λ(b) ≥0 0x+y. Thus,
b ≥0 0x, 0y implies b ≥0 0x+y. The converse is obvious. �

6.7. Glueing of semilattices and lattices. As an immediate conse-
quence of Claims 6.3 and 6.7 and of duality one obtains the following.
Lemma 6.8. Consider a finite height modular lattice S and a glueing
L of bounded posets Lx (x ∈ S).

(i) If the Lx are join semilattices then so is L. Moreover, with the
join operation +x on Lx one has σ(x) = [0x] a join embedding
S → L and joins in L are computed according to Claim 6.3,
identifying a ∈ Lx with [a].

(iii) If the Lx are lattices then so is L. Moreover, L is an S-glued
sum given by σ(x) = [0x], π(x) = [1x] for x ∈ S.

(iii) If L is an S-glued sum of lattice Lx given by σ, π then L is
isomorphic to the glueing L′ of lattices L′x = Lx × {x} with
0x = (σ(x), x), 1x = (π(x), x), 0y,x = (σ(y), x), 1y,x = (π(x), y),
and glueing maps γyx((a, x)) = (a, y) for σ(y) ≤ a ≤ γ(x).

6.8. Partial isomorphisms between glued sums.

Lemma 6.9. Consider a lattice L obtained by glueing Lx (x ∈ S) via
γyx. Let U ⊆ S an antichain and assume that L′ is obtained by a
glueing φyx (x ≺ y in S) of the lattices Lx (having image L′x in L′)
such that the following hold.

(1) φyx = γyx if x ≺ y in S and {x, y} ∩ U = ∅.
(2) If x ≺ u ≺ y and u ∈ U then φyu(a) = γyx(φ

−1
ux (a)) for all

a ∈ [φux(0y,x), 1u,x].
(3) If x ≺ u ≺ y and u ∈ U then φyu(b) = γyu(b) for all b ∈

[1u,x, 1u].

Then the following hold.

(i) There is an isomorphism χ : L|P → L′|P such that χ ◦ γyx =

φyx ◦ χ for all (x, y) ∈ P where P consists of the (x, y), x ≺ y
in S with {x, y} ∩ U = ∅.

(ii) If T is an ideal of S such that U ∩ T = ∅ then χ restricts to
an isomorphism of the ideal LT =

⋃
x∈T Lx of L onto the ideal

L′T =
⋃
x∈T L

′
x of L′.

According to (ii) we may identify LT with L′T . Also, by (i) we may
use computations in L|P to verify relations in L′|P .

Proof. Referring to (iii) of Lemma 6.8 define χ(a, x) = (a, x) for a ∈ Lx
and x 6∈ U to obtain a bijective map χ : L|P → L′|P which restricts to
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an isomorphism Lx → L′x for each x 6∈ U and such that χ(0Ly,x) = 0L
′

y,x

and χ(1Ly,x) = 1L
′

y,x if (x, y) ∈ P . �

7. Basic models

7.1. The lattice directly associated with a group. Adapting the
construction in [12, Section 4], fix a prime p. Recall the abelian group
A and its lattice L(A) from Subsection 4.4. In particular, A is a Zp2-
module. The proper “skeleton” will be the ideal S = L(pA) of L(A).
.

Fact 7.1. L(A) is an S-glued sum with embedding of S into L(A) given
by σ(X) = X and π(X) = {a ∈ A | pa ∈ X}. The interval sublattices
[σ(X), π(X)] of L(A) are isomorphic to lattices L(Z4

p) and L(A) is a
finite simple modular lattice.

Proof. pA is a free Z-module with generators fi = pei and relations
pfi = 0, i = 1, 2, 3- Now, with V = pA + Ze4 one obtains an isomor-
phism fi 7→ ei + V ∈ A/V and a lattice isomorphism π : S → [V,A] ⊆
L(A) such that σ(X) ≤ pA ≤ π(Y ) for all X, Y ∈ S. It follows that
L =

⋃
x∈S[σ(X), π(X] is a sublattice of L(A). Now, for any C ∈ L(A)

one has X := pC ∈ S and C ⊆ π(X) whence L = L(A). Finally, L(A)
is simple in view of Lemma 6.1. �

Given a group G, let Q denote the group ring Zp2(G) with coef-
ficients the integers modulo p2. The free Q-module B with genera-
tors e1, e2, e3, e4 and relation pe4 = 0 has a subgroup A generated by
e1, e2, e3, e4

Fact 7.2. L(A) embeds into the Q-submodule lattice L(B) of B via
X 7→ ε(X) = QX; moreover, σ′(X) = QX and π′(X) = Qπ(X) are
lattice embeddings of S into L(B) establishing an S-glued sum L(G)
within L(B). Finally, with the ideal T = [0,Ze1 + Ze3] of S, LT (G) =⋃
X∈T [QX,Qπ(X)] is an ideal of L(G).

Observe that B and L(B) are finite if so is G and that L(G) is a
“rather small” sublattice of L(B).

Proof. Since Q is a free Zp2-module (with basis G), Q is a flat Zp2-
module and the map X 7→ QX = Q⊗Zp2 X is a lattice homomorphism

L(A) → L(B) and injective since L(A) is simple. Thus, σ′ and π′ are
lattice embeddings, too, and L(G) =

⋃
X∈S[σ′(X), π′(X)] a sublattice

of L(B) which is an S-glued sum. �
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7.2. Capturing a group generator by a stable term. In LT (G)
there is a (canonical) skew (3, 2)-frame Ψ0 = (Φ′0,Φ0) given by the
submodules

Φ′0 : Qpe1, Qpe3, Qe4, Q(pe1 − pe3), Q(pe1 − e4), Q(pe3 − e4)

Φ0 : Qe1, Qe3, Q(e1 − e3).

Choose L0(G) as the ideal [0,>Ψ0
(3,2) ] of LT (G). The group G embeds

into the group of units of the coordinate ring R(Φ′0, L0(G)) via

g 7→ Q(pe1 − gpe3).

Recall the definitions of the derived skew frames Ψ(3,2) in Subsection 4.4
and the terms g∗1(z̄′, z̄) and g+(z̄′, z̄) from Lemma 5.3.

Lemma 7.3. For each group G and g ∈ G there is a modular lat-
tice L(G, g) (finite if G is finite) with spanning skew (4, 3)-frame Ψ =
(Φ′,Φ) of characteristic p× p and an isomorphism ω from L0(G) onto
the interval L0(G, g) = [0,>Ψ(3,2) ] of L(G, g) matching the skew (3, 2)-
frame Ψ0 of L0(G) with Ψ(3,2), inducing an isomorphism of coordinate
rings R(Φ′0, L0(G))→ R(Φ′, L0(G, g)), and such that

(∗) ω(Q(pe1 − gpe3) = g+(Ψ)

which is a stable element w.r.t. the 3-frame Φ′6=2.

Proof. Leaving (∗) aside, the lattice L(G, g) and the isomorphism ω
have been constructed in [12, Section 4] relying on the method estab-
lished in Lemma 6.9. Modularity follows from Lemma 6.2.

In particular, we may assume LT (G) an ideal of L(G, g) and ω iden-
tity. Moreover, according to [12, Lemma 18] one has

Q(pe1 − gpe2) = g∗1(Ψ) ∈ LT (G)

with g∗1(Ψ) stable for Φ′ according to [12, Cor.13] and (∗) follows ap-
plying the perspectivity π23 cf. Lemma 5.3.

Observe that in [12] Zp has been used to denote both the ring Z/pZ
and the ideal pZp2 of Zp2 = Z/p2Z. Similarly, R denoted both the ring
Q/pQ and the ideal pQ of Q. Referring to the ideal, given an element
a =

∑3
i=1 riei ∈ A one has the subgroup Zpa = Z

∑3
i=1 ripei of pA and

given b =
∑3

i=1 riei ∈ B one has the Q-submodule Rb = Q
∑3

i=1 ripei of
pB. In each case, the proper meaning is obvious from the context. �

7.3. Basic model.

Theorem 7.4. For each group G with generators ḡ = (g1, . . . , gn) in
G there is a modular lattice L(G, ḡ) such that the following hold
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(1) L(G, ḡ) contains an n-tower Ω(n)can (to be referred to as canon-
ical) of skew (4, 3)-frames Ψi = (Φ′i,Φi) of characteristic p× p,
i = 1, . . . , n

(2) There is an embedding γ : G → R(Φ′n, L(G, ḡ)) such that, for

all i, g+(Ψi) +⊥Ψn = γ(gi) and γ(gi) · (aΦ′i
1 + aΦ′i

3 ) = g+(Ψi).
(3) L(G, ḡ) is finite if G is finite.

Proof. Given i, consider L(G, gi) from Lemma 7.3 with skew (4, 3)-
frame Ψi = (Φ′i,Φi) and isomorphism ωi : L0(G)→ L0(G, gi). We may
assume that the L(G, gi) are pairwise disjoint lattices. Now,

αi(x) = ωi+1(ω−1
i (x · >Ψi

(3,2))) ∈ L0(G, gi)

defines an isomorphism

αi : [aΨi

2 ,>Ψi ]L(G,gi) → [⊥Ψi+1

,>Ψi+1
(3,2) ]Li+1(G,gi+1).

Let L(G, ḡ) arise by Dilworth-Hall glueing (as described in Subsec-
tion 6.1) the L(G, gi) via the isomorphisms αi. One has, due to the
glueing via the αi,

(∗∗) ωi(x) +⊥Ψj = ωj(x) for x ∈ L0(G)

for j = i + 1. The case i ≤ j < n as well as the relations required for
an n-tower follow by induction and transitivity of ↗ - recall Ψi

(3,2) ↗
Ψi(3,2). With the canonical embedding

η : G→ R(Φ′0, L(G, ḡ)) where η(x) = Q(pe1 − xpe3)

equation (∗) of Lemma 7.3 together with (∗∗) for j = n yield

ωn(η(gi)) = ωi(η(gi)) +⊥Ψn = g+(Ψi) +⊥Ψn .

Since G is generated by ḡ, ωn ◦ η restricts to an embedding γ : G →
R(Φ′n, L(G, ḡ)) as required in (2). �

8. Unsolvability

In order to prove Theorem 1.2 applying Slobodkoi’s Theorem 1.1,
we show that there is an algorithm reducing the Uniform Word Prob-
lem for the class G0 of all finite groups to the decision problem for the
equational theory of the classM0 of finite modular lattices. Moreover,
we observe that this reduction produces identities in n+ 6 lattice vari-
ables, if applied to group presentations in n generators. To prove the
reduction, we verify the hypotheses of Lemma 2.4 which are given just
before that lemma.
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Proof. Consider a finite group presentation given by words wj(ḡ), 1 ≤
j ≤ h in a list ḡ = (g1, . . . , gn) of generator symbols and relations
wj(ḡ) = e, j = 1, . . . , h. We construct a series of n-towers Ωm of skew
(4, 3)-frames

Ωm = (Ψk
m |k=1,...,n) = (Φ′km,Φ

k
m |k=1,...,n)

= (a′kmi, c
′k
mij; a

k
mi, c

k
mij |k=1,...,n), 0 ≤ m ≤ µ = n+ h.

The list of generators of Ω0 is also denoted by ā, that of Ωm by ām.
Let F = F0 denote the modular lattice freely generated by the n-tower
Ω = Ω0. The construction will be such that Ωm generates a sublattice
Fm of F0 so that Fm+1 ⊆ Fm for all m < µ. Moreover, the following
will hold.

(A) For the 4-frame Φ′nµ = (a′nµ,i, c
′n
µ,ij) in Fµ one has a list of elements

s̄µ = (sµ1, . . . , sµn) in the group R#(Φ′µ, F ) such that wj(s̄µ) =
c′nµ,13 for 1 ≤ j ≤ h.

(B) For any group G and ḡ in G with wj(ḡ) = e for 1 ≤ j ≤
h one has φ(ā) = φ(āµ) and φ(sµi) = γ(gi) for i = 1, . . . , n
where φ : F → L(G, ḡ) is the homomorphism mapping ā onto
the canonical n-tower Ωcan of the lattice L(G, ḡ) constructed in
Thm. 7.4.

Observe that φ in (B) exists by Thms. 3.9 and 7.4 (1). This construc-
tion will be uniform for all group presentations, to be implemented by
an algorithm as required in Lemma 2.4.

In the context of this lemma, we consider quasi-identities β in the
language of groups with antecedent α the conjunction of identities
wj(ȳ) = e, j = 1, . . . , h, where ȳ = (y1, . . . , yn). The presentation
required in (a) of Lemma 2.4 is that of an n-tower Ω of skew frames -
with generator symbols ā. Recall from Thm. 3.9 that Ω can be defined
in terms of n+ 6 generators.

The terms ui(x̄) are chosen such that ū(ā) is the n-tower generating
Fµ within F . Hypothesis (i) is satisfied due to Cor 3.10. Concerning
hypothesis (ii), consider a homomorphism φ : F → L ∈M and observe
that φ(ū(ā)) = φ(āµ) = φ(ā) by (B).

The translation required in (b) is given by the constant c′n13 defining
the multiplicative identity and the terms defining multiplication and
inversion in the group R#(Φ′n, F ) related to the 4-frame Φ′n = (a′ni , c

′n
ij )

which is part of the n-tower ā. According to Subsections 5.1 and 5.2
this translation satisfies hypothesis (iii) within M. Also by this, the
algebra G in (iv) is indeed a group, finite if L is finite. Moreover, the
generators ū|n(φ(ā)) satisfy α by (A).

Finally, hypothesis (v) is granted by Theorem 7.4 and (B).
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Outline of construction: To obtain āµ we put ā0 = ā and con-
struct, iteratively, n-towers Ωm = ām, m ≤ µ.
Case 1: m ≤ n

(1) The n-tower Ωm = ām is obtained from the n-tower Ωm−1 =
ām−1 by lower reduction, induced by a reduction of Ψm−1

m−1 to
Ψm
m, within the sublattice Fm−1 of F generated by ām−1,

(2) One has m elements sm1, . . . , smm 3-stable in F for the 4-frame
Φ′nm in Ωm.

(3) smi (i ≤ m−1) is obtained as in Fact 4.1 by the lower reduction
in (1) from sm−1,i stable in F for Φ′nm−1 while smm = s + ⊥Ψnm

where s = g+(Ψm
m) is 3-stable in F for the 4-frame Φ′mm .

(4) The reduction in (3) is chosen such that the skew frame Ψm
m−1

is reduced as in Lemma 5.2 to the skew frame Ψm
m having char-

acteristic p× p.
Case 2: n < m ≤ µ = n+ h.

(5) ām is obtained from ām−1 by upper reduction within the sub-
lattice Fm−1 of F generated by ām−1.

(6) One has a list s̄m of n elements stable in F for the 4-frame Φ′nm
and satisfying wj(s̄m) = c′nm,13 for j ≤ m− n, within the group

R#(Φ′nm, F ).
(7) These are obtained from s̄m−1 by the upper reduction in (5).

Proof of (A) and (B). We show, by induction, that for all m ≤ µ

• φ(ām) = φ(ā), that is φ(Ωm) = φ(Ω).
• s̄m is a list of stable elements for Φ′nm
• φ(smi) = γ(gi) for i ≤ min(m,n).
• wj(s̄m) = c′nm,13 where m ≥ n and j ≤ h = m− n.

The case m = 0 is just the definition of φ. For m ≤ n, we ap-
ply Lemma 5.2 to Ψm

m−1, that is with b = b∗(ā′mm−1, ā
m
m−1) and d =

d∗(ā′mm−1, ā
m
m−1). By inductive hypothesis one has φ(Ψm

m−1) = φ(Ψm)
which is of characteristic p × p as part of the canonical n-tower of
L(G, ḡ), whence φ(b) = φ(⊥Ψmm) and φ(d) = φ(a

′Ψmm
1 ) in view of (4). It

follows

φ(Ψm
m) = φ((Ψm

m−1)b,d) = (φ(Ψm
m−1))φ(b),φ(d) = φ(Ψm

m−1) = φ(Ψm).

This in turn implies Φ(Ωm) = Φ(Ωm−1) in view of Observation 4.3. The
element s in (3) being chosen as s = g+(Ψm

m) according to Lemma 5.3 we
have s 3-stable for Φ′mm and smm 3-stable for Φ′nm due to the isomorphism
induced by (Ψm

m)3,2 ↗ (Ψn
m)3,2 which matches Φ′mm with Φ′nm. Moreover,

φ(smm) = γ(gm) by (2) of Thm. 7.4. For i < m the other hand,
according to (3) smi is obtained from sm−1,i as in Fact 4.1 applying the
reduction with b1 +an⊥ to the 4-frame Φ′nm−1. In particular, smi is stable
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for Φ′nm. Since φ(Ωm) = φ(Ωm−1) it follows that φ(smi) = φ(sm−1,i) =
γ(gi).

For m = n + j we proceed with the same kind of reasoning, now
referring to Lemma 5.1, to add wj(s̄m) = c′nm,13, while stable s̄m−1 leads
to stable s̄m, and φ(sm−1,i) = γ(gi) to φ(sm,i) = γ(gi) and wi(s̄m−1) =
c′nm−1,13 to wi(s̄m) = c′nm,13 for all i < m− n.

�

9. Remarks

Reducing (Restricted) Word Problems for groups to such for mod-
ular lattices follows the same scheme in the finite and in the infinite
case. Recall from Subsection 5.1 that with any 4 frame in a modular
lattice one has the associated von Neumann coordinate ring R(Φ) with
subgroup R∗(Φ) of units, all defined in terms of the frame.

Now, with a group presentation (Π, ḡ) associate the lattice presen-
tation λ(Π, ḡ) obtained as follows: To the 4-frame Φ add a generator
symbol gi for each gi; also, to the relations add the relations a1gi = a⊥,
a1 + gi = a1 + a2, and wi(ḡ) = c13. Here. wi(ḡ) = e is a relation of
(Π, ḡ).

By this construction, if w(ḡ) = e is a consequence of (Π, ḡ) for (finite)
groups, then w(ḡ) = c13 is a consequence of λ(Π, ḡ) for (finite) modular
lattices L, since R∗(Φ, L) is a (finite) group for any L.

On the other hand, if (G, h̄) is a model of (Π, ḡ) such that w(h̄) 6=
e (and G finite), then a (finite) model (L,Φ, h̄) with w(h̄) 6= c13 is
obtained choosing a (finite) vector space FV of dimF V = 4|G|; then
the lattice L of R-submodules of R4, R the group ring F [G], embeds
into the lattice L(FV ) of subspaces; moreover, the canonical 4-frame Φ
of L together with the R(e1−hie3) ∈ R∗(Φ) provide the required model
of λ(Π, ḡ) such that w(ḡ) 6= c13. In particular, the model embeds into
the subspace lattice L(FV ). Consequently, the relevant class of models
consists of sublattices of L(FV ) where dimF V is infinite respectively
of L(FdVd) where dimFd Vd →∞. In particular, from Thm. 1.1 one has
the following.

Corollary 9.1. Let C be any class of finite modular lattices such that
for all d ∈ N there are lattices of subspaces L(FdVd) in C with dimFd Vd ≥
d. Then the Restricted Word Problem for C is unsolvable.

With a simple modification one can restrict the number of lattice gen-
erators to 5: For any n ≥ 3 n-frames have an equivalent presentation
in modular lattice theory to a presentation with 4-generators [10, Satz
4.1] and with g =

∑n
j=1 π3,j+3(gj) one obtains gj = πj+3,3(g ·(a1 +aj+3))
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for j = 1, . . . , n to replace ḡ equivalently by g and to proceed with the
4-frame given by ai, cij where i, j ≤ 4.

For reduction to identities, the scheme is modified as described in
Subsection 2.4. In order to associate with group generators lattice
terms which allows one to force group relations within the lattice, sev-
eral frames are combined via some kind of glueing. This leads to models
which are non-Arguesian lattices and, in particular, do not embed into
lattices of normal subgroups.

In all examples, discussed, one has a certain set Σ of quasi-identities
in the language of groups and for each β ∈ Σ an associated quasi-
identity λ(β) in the language of lattices and a class S of (finite) modular
lattices, the class of “models”, such that the following hold.

• If β holds for all (finite) groups then λ(β) holds for all (finite)
modular lattices.
• If β fails for some (finite) group then λ(β) fails for some “model”

lattice in S.

Thus, if Σ is undecidable for the class of (finite) groups, then the set
of λ(β) valid in all (finite) modular lattices and the set of λ(β) failing
in some lattice in S are recursively inseparable. In other words, the
undecidability results extend to all classes of (finite) modular lattices
containing the relevant class of models.

Observe that the number of generators in Slobodkoi’s Theorem is
3m+61 where m is the minimum number of states of a two tape Minsky
machine computing some partial recursive function with non-recursive
domain.

Problem 9.2. What is the minimal N such that the N-variable equa-
tional theory of finite modular lattices is undecidable.

Since skew (n,m)-frames can be generated by 8 elements, the follow-
ing could be of use.

Problem 9.3. Can one find n − m stable elements in the modular
lattice freely generated by a skew (n,m)-frame of characteristic p× p?
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